Dieta antinfiammatoria in un approccio integrato per la gestione dello stress ossidativo

Nel panorama della medicina integrata e della prevenzione, la dieta antinfiammatoria rappresenta una strategia chiave per migliorare la qualità della vita e ridurre il rischio di malattie croniche. Al Centro Ines, questo approccio viene integrato con tecniche naturopatiche, supporti nutraceutici mirati e pratiche di riequilibrio psico-fisico, per una gestione efficace dello stress ossidativo e dell’infiammazione sistemica.

Cos’è lo stress ossidativo?

Lo stress ossidativo è uno squilibrio tra la produzione di specie reattive dell’ossigeno (ROS) e la capacità del nostro organismo di neutralizzarle tramite antiossidanti endogeni o esogeni. Questo squilibrio può causare danni a livello cellulare e mitocondriale, ed è coinvolto nella genesi di patologie come malattie cardiovascolari, diabete, Alzheimer, tumori e invecchiamento precoce.

L’importanza della dieta antinfiammatoria

La dieta antinfiammatoria si basa su cibi freschi, integrali e ricchi di sostanze fitochimiche con azione antiossidante e antinfiammatoria. Modelli alimentari come la dieta mediterranea, la dieta DASH o quella a basso indice glicemicosono stati ampiamente studiati per i loro benefici nel ridurre marker infiammatori come la Proteina C-reattiva (PCR), IL-6 e TNF-α.

Tra i nutrienti chiave troviamo:

  • Omega-3: riducono le citochine pro-infiammatorie e migliorano il profilo lipidico.

  • Polifenoli: come quercetina, resveratrolo e curcumina, svolgono un’azione antiossidante e modulano la risposta infiammatoria.

  • Fibre e prebiotici: favoriscono la salute del microbiota intestinale e la produzione di SCFA con azione antinfiammatoria.

Il ruolo di glutatione e NADH

La nuova frontiera della nutrizione integrata include molecole funzionali come:

  • Glutatione (GSH): antiossidante intracellulare che protegge le cellule dai danni ossidativi. È coinvolto nella rigenerazione di altri antiossidanti e nella detossificazione epatica.

  • NADH (nicotinammide adenin dinucleotide ridotto): fondamentale per la produzione di energia mitocondriale e per la rigenerazione del GSH. Agisce come cofattore per enzimi antiossidanti e modula l’infiammazione.

L’associazione di NADH e glutatione supporta la salute mitocondriale, l’efficienza energetica e la risposta immunitaria, con promettenti applicazioni in ambito neurodegenerativo e metabolico.

Approccio integrato del Centro Ines

Al Centro Ines, la dieta antinfiammatoria è inserita in un percorso integrato che include:

  • Educazione alimentare personalizzata

  • Integrazione nutraceutica mirata (vitamina C, glutatione, NADH, omega-3)

  • Gestione dello stress con tecniche come yoga, mindfulness e riflessologia

  • Sostegno al microbiota intestinale con probiotici e fitoterapici

  • Valutazione personalizzata attraverso test bioenergetici e strumenti di medicina naturale

Conclusione

Adottare un’alimentazione antinfiammatoria, integrata con stili di vita sani e sostegni nutraceutici mirati, è un passo essenziale per prevenire lo stress ossidativo, rallentare l’invecchiamento cellulare e migliorare il benessere generale.


Bibliografia

[1]  Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015;4:180–3. https://doi.org/10.1016/J.REDOX.2015.01.002.

[2]  Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Free Radicals in Biology and Medicine 2015. https://doi.org/10.1093/ACPROF:OSO/9780198717478.001.0001.

[3]  Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R, Haller D, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr 2013;109 Suppl 1. https://doi.org/10.1017/S0007114512005119.

[4]  Ginter E, Simko V. Recent data on Mediterranean diet, cardiovascular disease, cancer, diabetes and life expectancy. Bratisl Lek Listy 2015;116:346–8. https://doi.org/10.4149/BLL_2015_065.

[5]  Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002;18:872–9. https://doi.org/10.1016/S0899-9007(02)00916-4.

[6]  Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24. https://doi.org/10.1016/J.CUB.2014.03.034.

[7]  Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. Curr Med Chem 2011;18:3871–88. https://doi.org/10.2174/092986711803414368.

[8]  Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005;81. https://doi.org/10.1093/AJCN/81.1.215S.

[9]  Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev 2013;71:511–27. https://doi.org/10.1111/NURE.12035.

[10]  Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health 2020;3:74–92. https://doi.org/10.1136/BMJNPH-2020-000085.

[11]  González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez- Augustin O, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011;51:331–62. https://doi.org/10.1080/10408390903584094.

[12]  Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016;5. https://doi.org/10.1017/JNS.2016.41.

[13]  Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013;127:188–96. https://doi.org/10.1161/CIRCULATIONAHA.112.122408.

[14]  Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta 2015;1851:469– 84. https://doi.org/10.1016/J.BBALIP.2014.08.010.

[15]  Serhan CN, Chiang N, Dalli J. The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution. Semin Immunol 2015;27:200–15. https://doi.org/10.1016/J.SMIM.2015.03.004.

[16]  Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017;45:1105–15. https://doi.org/10.1042/BST20160474.

[17]  Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab 2024;109. https://doi.org/10.1210/CLINEM/DGAE499.

[18]  Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De los Reyes- Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 2016;7. https://doi.org/10.3389/FMICB.2016.00185.

[19]  Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada MLC, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr 2019;22:936–41. https://doi.org/10.1017/S1368980018003762.

[20]  Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016;133:187– 225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585.

[21]  Cryan JF, O’riordan KJ, Cowan CSM, Sandhu K V., Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev 2019;99:1877–2013. https://doi.org/10.1152/PHYSREV.00018.2018.

[22]  Martinez-Lacoba R, Pardo-Garcia I, Amo-Saus E, Escribano-Sotos F. Mediterranean diet and health outcomes: a systematic meta-review. Eur J Public Health 2018;28:955–61. https://doi.org/10.1093/EURPUB/CKY113.

[23]  Grosso G, Buscemi S, Galvano F, Mistretta A, Marventano S, Vela V La, et al. Mediterranean diet and cancer: epidemiological evidence and mechanism of selected aspects. BMC Surg 2013;13 Suppl 2. https://doi.org/10.1186/1471- 2482-13-S2-S14.

[24]  Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 1997;336:1117–24. https://doi.org/10.1056/NEJM199704173361601.

[25]  Jenkins DJA, Kendall CWC, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL, et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 2008;300:2742–53. https://doi.org/10.1001/JAMA.2008.808.

[26]  Connell AM, Danzo S, Magee K, Uhlman R. Children’s appraisals of maternal depression and responses to emotional faces in early-adolescence: An Event Related Potential (ERP) study. J Affect Disord 2019;250:241–8. https://doi.org/10.1016/J.JAD.2019.03.038.

[27]  Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr 2018;58:1260–70. https://doi.org/10.1080/10408398.2016.1251390.

[28]  Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 2013;75:645–62. https://doi.org/10.1111/J.1365-2125.2012.04374.X.

[29]  Flock MR, Skulas-Ray AC, Harris WS, Etherton TD, Fleming JA, Kris- Etherton PM. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose-response randomized controlled trial. J Am Heart Assoc 2013;2. https://doi.org/10.1161/JAHA.113.000513.

[30]  Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients 2017;9. https://doi.org/10.3390/NU9111211.

[31]  Zhang W, Xu Y. [Analysis of serum Vitamin C expression level and its correlation with immune function in adult patients with chronic sinusitis]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2022;36:382-385;388. https://doi.org/10.13201/J.ISSN.2096-7993.2022.05.012.

[32]  Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 2011;51:1000–13. https://doi.org/10.1016/J.FREERADBIOMED.2011.05.017.

[33]  Riccioni G, Frigiola A, Pasquale S, De Massimo G, D’Orazio N. Vitamin C and E consumption and coronary heart disease in men. Front Biosci (Elite Ed) 2012;4:373–80. https://doi.org/10.2741/E384.

[34]  Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003;23. https://doi.org/10.1161/01.ATV.0000038493.65177.94.

[35]  Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods 2017;6. https://doi.org/10.3390/FOODS6100092.

[36]  Sharifi-Rad J, Rayess Y El, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol 2020;11. https://doi.org/10.3389/FPHAR.2020.01021.

[37]  Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019;11. https://doi.org/10.3390/NU11092073.

[38]  Tenório MCDS, Graciliano NG, Moura FA, de Oliveira ACM, Goulart MOF. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants (Basel) 2021;10. https://doi.org/10.3390/ANTIOX10060967.

[39]  Rayman MP. Selenium and human health. Lancet 2012;379:1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9.

[40]  Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023;13. https://doi.org/10.3390/BIOM13050799.

[41]  DiNicolantonio JJ, Bhutani J, McCarty MF, O’Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart 2015;2:e000326. https://doi.org/10.1136/OPENHRT-2015-000326.

[42]  Hollman PCH, Arts ICW. Flavonols, flavones and flavanols – nature, occurrence and dietary burden. Journal of the Science of Food and Agricolture 2000.

[43]  Gualtieri P, Marchetti M, Frank G, Smeriglio A, Trombetta D, Colica C, et al. Antioxidant-Enriched Diet on Oxidative Stress and Inflammation Gene Expression: A Randomized Controlled Trial. Genes (Basel) 2023;14. https://doi.org/10.3390/GENES14010206.

[44]  Pizzorno J. Glutathione! Integr Med (Encinitas) 2014;13:8–12.

[45]  Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and

its implications for health. J Nutr 2004;134:489–92.

https://doi.org/10.1093/JN/134.3.489.

[46]  Richie JP, Nichenametla S, Neidig W, Calcagnotto A, Haley JS, Schell TD, et

al. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur J Nutr 2015;54:251–63. https://doi.org/10.1007/S00394-014-0706-Z.

[47]  Chini C, Hogan KA, Warner GM, Tarragó MG, Peclat TR, Tchkonia T, et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem Biophys Res Commun 2019;513:486–93. https://doi.org/10.1016/J.BBRC.2019.03.199.

[48]  Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients 2020;12. https://doi.org/10.3390/NU12061616.

[49]  Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, et al. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019;30:251–94. https://doi.org/10.1089/ARS.2017.7269.

[50]  Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc Natl

Acad Sci U S A 2021;118. https://doi.org/10.1073/PNAS.2011226118/-

/DCSUPPLEMENTAL.

[51]  Checconi P, Limongi D, Baldelli S, Ciriolo MR, Nencioni L, Palamara AT.

Role of Glutathionylation in Infection and Inflammation. Nutrients 2019;11.

https://doi.org/10.3390/NU11081952.

[52]  Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling

for an old antioxidant. Front Pharmacol 2014;5.

https://doi.org/10.3389/FPHAR.2014.00196.

[53]  Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al.

Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N Engl J Med 2013;368:1279-90. N Engl J Med 2018;378:2441–2. https://doi.org/10.1056/NEJMC1806491.

[54]  Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer 2014;135:1884–97. https://doi.org/10.1002/IJC.28824.

[55]  Guasch-Ferré M, Willett WC. The Mediterranean diet and health: a comprehensive overview. J Intern Med 2021;290:549–66. https://doi.org/10.1111/JOIM.13333.

[56]  Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci 2018;73:318–26. https://doi.org/10.1093/GERONA/GLX227.

[57]  Catuogno S, Arena C, Saggese S, Sarto F. Balanced performance measurement in research hospitals: the participative case study of a haematology department. BMC Health Serv Res 2017;17. https://doi.org/10.1186/S12913-017-2479-6.

[58]  Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br J Pharmacol 2020;177:1241–57. https://doi.org/10.1111/BPH.14778.

[59]  Razquin C, Martinez-Gonzalez MA. A Traditional Mediterranean Diet Effectively Reduces Inflammation and Improves Cardiovascular Health. Nutrients 2019;11. https://doi.org/10.3390/NU11081842.

[60]  Augimeri G, Galluccio A, Caparello G, Avolio E, La Russa D, De Rose D, et al. Potential Antioxidant and Anti-Inflammatory Properties of Serum from Healthy Adolescents with Optimal Mediterranean Diet Adherence: Findings from DIMENU Cross-Sectional Study. Antioxidants (Basel) 2021;10. https://doi.org/10.3390/ANTIOX10081172.

[61]  Calcaterra V, Verduci E, Milanta C, Agostinelli M, Bona F, Croce S, et al. The Benefits of the Mediterranean Diet on Inflamm-Aging in Childhood Obesity. Nutrients 2024;16. https://doi.org/10.3390/NU16091286.

[62]  Asoudeh F, Fallah M, Aminianfar A, Djafarian K, Shirzad N, Clark CCT, et al. The effect of Mediterranean diet on inflammatory biomarkers and components of metabolic syndrome in adolescent girls. J Endocrinol Invest 2023;46:1995–2004. https://doi.org/10.1007/S40618-023-02027-1.

[63]  Patel D, Busch R. Omega-3 Fatty Acids and Cardiovascular Disease: A Narrative Review for Pharmacists. J Cardiovasc Pharmacol Ther 2021;26:524–32. https://doi.org/10.1177/10742484211023715.

[64]  LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160–8. https://doi.org/10.1016/J.COPBIO.2012.08.005.

[65]  Allen J, Bradley RD. Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J Altern Complement Med 2011;17:827–33. https://doi.org/10.1089/ACM.2010.0716.

[66]  Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care 2013;16:657–61. https://doi.org/10.1097/MCO.0B013E32836510C0.

[67]  Chen Z, Wang H, Wang Q. [Therapeutic potential of NADH: in neurodegenerative diseases characterizde by mitochondrial dysfunction]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2024;38:57–62. https://doi.org/10.13201/J.ISSN.2096-7993.2024.01.009.

[68]  Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD+ metabolism. Cell Metab 2021;33:1076–87. https://doi.org/10.1016/J.CMET.2021.04.003.

[69]  Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011;11:607–10. https://doi.org/10.1038/NRI3041.

[70]  Black DS, Slavich GM. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials. Ann N Y Acad Sci 2016;1373:13–24. https://doi.org/10.1111/NYAS.12998.

[71]  Mishra B, Agarwal A, George JA, Upadhyay AD, Nilima N, Mishra R, et al. Effectiveness of Yoga in Modulating Markers of Immunity and Inflammation: A Systematic Review and Meta-Analysis. Cureus 2024;16. https://doi.org/10.7759/CUREUS.57541.

[72]  Pascoe MC, Thompson DR, Ski CF. Yoga, mindfulness-based stress reduction and stress-related physiological measures: A meta-analysis. Psychoneuroendocrinology 2017;86:152–68. https://doi.org/10.1016/J.PSYNEUEN.2017.08.008.

[73]  Villalba DK, Lindsay EK, Marsland AL, Greco CM, Young S, Brown KW, et al. Mindfulness training and systemic low-grade inflammation in stressed community adults: Evidence from two randomized controlled trials. PLoS One 2019;14. https://doi.org/10.1371/JOURNAL.PONE.0219120.

[74]  Irwin MR, Opp MR. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology 2017;42:129–55. https://doi.org/10.1038/NPP.2016.148.

[75]  Calder PC, Yaqoob P. Omega-3 polyunsaturated fatty acids and human health outcomes. Biofactors 2009;35:266–72. https://doi.org/10.1002/BIOF.42.

[76]  Sekhar R V., Mckay S V., Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011;34:162–7. https://doi.org/10.2337/DC10-1006.

[77] Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020;5. https://doi.org/10.1038/S41392-020-00311-7.